The penetration of FUV radiation into molecular clouds

نویسنده

  • Javier R. Goicoechea
چکیده

Context. FUV radiation strongly affects the physical and chemical state of molecular clouds, from protoplanetary disks to entire galaxies. Aims. The solution of the FUV radiative transfer equation can be complicated if the most relevant radiative processes such us dust scattering and gas line absorption are included, and have realistic (non–uniform) properties, i.e. if optical properties are depth dependent. Methods. We have extended the spherical harmonics method to solve for the FUV radiation field in externally or internally illuminated clouds taking into account gas absorption and coherent, nonconservative and anisotropic scattering by dust grains. The new formulation has been implemented in the Meudon PDR code and thus it will be publicly available. Results. Our formalism allows us to consistently include: (i) varying dust populations and (ii) gas lines in the FUV radiative transfer. The FUV penetration depth rises for increasing dust albedo and anisotropy of the scattered radiation (e.g. when grains grow towards cloud interiors). Conclusions. Illustrative models of illuminated clouds where only the dust populations are varied confirm earlier predictions for the FUV penetration in diffuse clouds (AV<1). For denser and more embedded sources (AV>1) we show that the FUV radiation field inside the cloud can differ by orders of magnitude depending on the grain properties and growth. Our models reveal significant differences regarding the resulting physical and chemical structures for steep vs. flat extinction curves towards molecular clouds. In particular, we show that the photochemical and thermal gradients can be very different depending on grain growth. Therefore, the assumption of uniform dust properties and averaged extinction curves can be a crude approximation to determine the resulting scattering properties, prevailing chemistry and atomic/molecular abundances in ISM clouds or protoplanetary disks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primordial Star Formation under Far-Ultraviolet Radiation

Thermal and chemical evolution of primordial gas clouds irradiated with farultraviolet (FUV; hν < 13.6 eV) radiation is investigated. In clouds irradiated by intense FUV radiation, sufficient hydrogen molecules to be important for cooling are never formed. However, even without molecular hydrogen, if the clouds are massive enough, they start collapsing via atomic hydrogen line cooling. Such clo...

متن کامل

The Spectroscopy of Plasma Evolution from Astrophysical Radiation Mission

The Spectroscopy of Plasma Evolution from Astrophysical Radiation (or the Far-ultraviolet Imaging Spectrograph) instruments, flown aboard the STSAT-1 satellite mission, have provided the first largearea spectral mapping of the cosmic far ultraviolet (FUV, λ 900-1750) background. We observe diffuse radiation from hot (10 – 10 K) and ionized plasmas, molecular hydrogen, and dust scattered starlig...

متن کامل

Photoelectric heating and [CII] cooling in translucent clouds: results for cloud models based on simulations of compressible MHD turbulence

Far–ultraviolet (FUV) photons expel electrons from interstellar dust grains and the excess kinetic energy of the electrons is converted into gas thermal energy through collisions. This photoelectric heating is believed to be the main heating mechanism in cool HI clouds. The heating rate cannot be directly measured, but it can be estimated through observations of the [CII] line emission, since t...

متن کامل

The Horsehead nebula , a template source for interstellar physics and chemistry

We present a summary of our previous investigations of the physical and chemical structure of the Horsehead nebula, and discuss how these studies led to advances on the understanding of the impact of FUV radiation on the structure of dense interstellar clouds. Specific molecular tracers can be used to isolate different environments, that are more sensitive to changes in the FUV radiation or den...

متن کامل

Time Dependence of the Ultraviolet Radiation Field in the Local Interstellar Medium

Far Ultraviolet (FUV, 6 eV< hν <13.6 eV) radiation has been recognized as the main source of heating of the neutral interstellar gas, and, as a consequence, it determines whether the thermal balance of the neutral gas results in cold (T ∼ 50− 100K) clouds (CNM), warm (T ∼ 104K) clouds (WNM), or a combination of the two. High FUV fields convert the neutral gas to WNM, while low fields result in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006